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ABSTRACT 

 

Data mining techniques reveal patterns in large databases that may be strategically 

relevant. Organizations prepare the data before participating in data sharing agreements in order 

to avoid revealing tactically important insights to external organizations. Viable techniques that 

preserve the privacy of strategically significant frequent item sets are essential in the protection of 

a competitive advantage. This research improves the scalability of a frequent item set hiding 

algorithm through a partitioning heuristic that decomposes an exact hiding algorithm problem 

formulation into multiple smaller sections that are processed separately to generate partial 

extensions of the database.  The smaller data extensions are then combined to form one extension 

that reduces the statistical significance of all sensitive frequent item sets without changing the 

statistical significance of the remaining data. By requiring less processing resources, the 

partitioning heuristic improves the scalability of the exact hiding algorithm. 
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INTRODUCTION  

 

Organizations analyze and share data to support the management of operations and 

strategize for the future. Data sharing practices give rise to privacy concerns because of the 

possibility of revealing both confidential data and sensitive knowledge patterns within the 

disclosed data. Confidential data is protected by overlaying each data item with an insignificant 

data stream. The identification and subsequent hiding of sensitive knowledge patterns is more 

challenging. A variety of privacy preserving techniques are available to prevent the discovery of 

sensitive knowledge within data. When compared, privacy preserving data mining algorithms 

display strengths and weakness in processing performance and the ability to hide the appropriate 

data (Vaghashia, & Ganatra, 2015; Gkoulalas-Divanis & Verykios, 2010; Gkoulalas-Divanis & 

Verykios, 2009a; Gkoulalas-Divanis & Verykios, 2009b; Menon & Sarkar, 2007; Menon, 

Sarkar, & Mukherjee, 2005).  

Association rule mining discovers item sets that occur in transactional data some of 

which occur with a significant frequency (Aggarwal & Philip, 2008). The strategically important 

significant associate rules should be hidden within the database prior to sharing the data with 

external parties. A new direction of research in privacy preserving techniques is identified as 

exact approaches.  This approach provides for better solutions but with increased time and 

memory processing requirements. Exact approaches generate a constraint optimization problem 

(COP) that is solved through binary integer programming (BIP). The objective function 

minimizes the number of generated transactions so that enough transactions are created to make 

sensitive item sets infrequent in the sanitized database. The constraints require that the frequency 

of non-sensitive item sets is not changed in the sanitized database.  The scalability of an exact 

hiding process has limitations and addressing this limitation is very important due to the 

exponentially increasing size of databases and the increasing number of data sharing instances 

(Agrawal & Srikant, 1994; Gkoulalas-Divanis & Verykios, 2009b; Menon & Sarkar, 2007; 

Menon, Sarkar, & Mukherjee, 2005). 

This research addresses the scalability of an exact hiding algorithm with the development 

of a partitioning heuristic which decomposes the COP formulation into multiple, smaller 
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problems. The solver processes the smaller problem separately and generates a smaller database 

extension. The multiple database extension are combined to form an extension to the original 

database. Identical test cases are used to compare solutions with the exact algorithm and the 

partitioning heuristic algorithm. Several parameters are considered including: the size of the 

COP input file; the number of records required to reduce the statistical significance of the 

sensitive item sets; and, the statistical significance of non-sensitive item sets.  

 

METHODOLOGY 

 

Both versions of the algorithm are implemented: the original algorithm and the 

partitioning heuristic algorithm. Identical datasets are processed by each algorithm with the same 

mining frequency so that the frequent and infrequent item sets are identical. The same, arbitrary 

sensitive item sets are identified.  Processing results are then compared and analyzed. The design 

of the original algorithm and the partitioning heuristic algorithm differ only in the generation of 

the constraint optimization problem (COP). The COP depends on the following information:  
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a. �, the number of transactions in the original database �ℴ, 

b. ℳ, the cardinality of the set of items, 

c. �, the minimum number of transactions that the database extension �� must have 

to properly secure the sensitive knowledge calculated as: 

 

� =  
  �� (��,�ℴ) 
�����  – N � + 1      (1) 

d. Item sets identified through the iZi Project’s version of the Apriori algorithm 

shared by Frédéric Flouvat (Flouvat, 2013). 

 

The number of transactions in the database is identified by the variable N.  Variable Q 

signifies the minimum number of transactions that must be generated to reduce the statistical 

significance of the most frequently occurring sensitive item set. As an example, assume a 

database with 100 transactions, �=100, and a mining threshold of .3, ����� = .3, and a sensitive 

item set with frequency of .4, therefore sup (I�, �ℴ) = 40. Based on Formula 1, a database 

extension including 33 transactions should be combined with the original database so that the 

sensitive item set is hidden. As a result, the sensitive item set is infrequent in the sanitized 

database at the same mining threshold since it occurs with a frequency lower than .3. In cases 

where there are multiple sensitive item sets, the item set with the highest frequency is selected 

for this formula. Logically, if enough transactions are generated to hide the sensitive item set 

with the highest frequency, then enough transactions have been generated to high sensitive item 

sets with lower frequencies. 

Next, a threshold is calculated for each nonsensitive item set. The threshold signifies the 

maximum number of item sets that may be generated so that infrequent items may remain 

infrequent and frequent items remain frequent in the final version of the database. The threshold 

is based on the minimum frequency (mfreq) which is a number, designated by the owners of the 

data. It identifies the occurrence level that separates item sets that are considered infrequent from 

those considered frequent. An item set’s support level is identified by the variable sup(I, �o ). 

The original algorithm uses the following formula: 

 

Threshold = (mfreq × (" + �) – sup(I, �o ))                                   (2) 

 

The partitioning heuristic algorithm considers the value k (signifying the number of 

partitions) in determining the threshold and uses the following formula:  

 

Threshold = (mfreq × (" + �) – sup(I, �o )) / $                              (3) 

 

During the development of the partitioning heuristic, preliminary testing confirmed the 

appropriateness of threshold Formula 3. The solver did not successfully process in almost all test 

cases based on thresholds calculated with alternative versions of the equation.  

Constraint optimization problem solver  

  

The COP solver regulates the values of all items in every transaction of the database �� 

based on the constraints. The IBM CPLEX Optimizer is the linear optimization solver used to 

test this research (IBM Academic Initiative, 2017). Theoretically, if the original COP 
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formulation for a problem can be logically decomposed into smaller problems, and the separate 

results can be combined, then the combined processing resources will be less than the total 

resources required to solve the original COP formulation.  Each time the solver processes small 

problems, it generates a fraction of the total transactions required for �� to hide the sensitive 

item sets. Each generated transaction set is combined to form the database extension, ��.  

The partitioning heuristic algorithm modifies the COP formulation process by generating 

transactions in $ steps instead of generating all the transactions in �� at once like the original 

hiding algorithm. The partitioning heuristic algorithm decomposes the problem by considering 

the variable $ in determining the number of transactions to generate and in the calculation of the 

threshold for item sets in the revised border.  The algorithm generates approximately |��|/$ 

transactions which the solver processes separately. Combining the transactions in the $ steps of 

the partitioning algorithm to form �� approximates the �� generated in one step of the original 

algorithm.  

The variable � determines the number of transactions that �� must have to properly 

secure the sensitive knowledge in the COP formulation. The partitioning heuristic COP 

formulation considers the value of � and $ and generates |�|/$ transactions for each of the $ 

steps. Generating |�|/$ transactions formulates a smaller COP with fewer variables and 

constraints.  

 

Comparison of the sizes of the COP formulations 

 

The algorithms generate each section of the COP problem:  the objective function, 

frequent border constraints, infrequent border constraints, not-null constraints, and binary 

variable declarations. The partitioning heuristic algorithm applies the variable $ to each section 

of the formulation process. Formulation of the objective function is based on the value � and the 

number of item sets. The objective function in the original algorithm includes  �× M variables. 

Applying $, the partitioning version of the algorithm includes |� × M| / $ variables.  

The original algorithm generates 2� constraints for each record in the frequent and 

infrequent item set border. A threshold is calculated for each constraint. The partitioning 

heuristic algorithm generates 2� / $ constraints for each records in the frequent and infrequent 

item set border. The formula for the threshold in the original algorithm is divided by the $ 

variable to determine the threshold for the partitioning heuristic algorithm. The heuristic has the 

greatest impact on the formulation of the COP in this section of the process. The not-null 

constraints section generates a constraint for each generated transaction so that the sum of the 

variables is greater than or equal to one. The number of not-null constraints generated by the 

partitioning heuristic algorithm is the number generated by the original algorithm divided by the 

variable $.  

The partitioning heuristic algorithm generates transactions in $ steps instead of 

generating all the transactions in the database extension, ��, at once. The solver independently 

solves each of the COP created by the partitioning heuristic algorithm process and generates 

approximately |��|/$ transactions for each solver process. As a result, there are $ transaction 

files generated by the solver.  An additional step is added at the end of the partitioning heuristic 

algorithm for combining the transactions in the $ steps to form �� approximates the �� 

generated in one step of the original hiding algorithm. 
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Test cases 

 

Test cases are based on three datasets of different sizes and compositions posted on the 

Frequent Itemset Mining Implementations (FIMI) Repository and the Data Mining Forum: 

T1014D100k.gz, connect.gz, and retail.gz (FIMI, 2017).  It was necessary to select random sets 

of transactions from the full set of data in each dataset because preliminary testing revealed that 

the COP formulation based on the full dataset was too large for the solver to processing on 

resources of a stand-along personal computer.  Preliminary testing confirmed that processing 

resources for the COP solver increases at an exponential rate with increasing problem sizes. 

Testing revealed that the solver failed processing failed due to resource memory limitations with 

formulations based on the entire set of transactions.  Therefore, it was necessary to take random 

samples of transactions from the original datasets for processing. Through an iterative process, 

the number of transactions in the test cases were determined.   

A random collection of 300 transactions were selected from the T1014D100k.gz dataset 

generated by the IBM Almaden Quest research group (FIMI, 2017). This dataset includes 999 

different items. Each transaction includes a set of item sets ranging in size from two to 25 item 

sets. A random selection of 100 transactions were selected from the connect.gz dataset prepared 

by Roberto Bayardo (FIMI, 2017).This dataset includes 129 difference items. Each transaction 

includes 43 items. A random selection 500 transactions were selected from retail.gz dataset 

prepared by Tom Brijs. This dataset include 16,470 difference items. Each transaction includes a 

variety of items, a minimum of 1 and average of 13 items.  

The sensitive item sets and the mining threshold of interest are arbitrarily assigned. Both 

algorithms processed with the same parameters for each test case. The partitioning heuristic 

algorithm was processed with $ = 2 (in 2 steps) and again with  $ = 4 (in 4 steps). As a result, 

there were three processes for each test case. The 18 test cases used to compare the original 

hiding algorithm to the partitioning heuristic algorithm are described in Table 1 (Appendix). 

 

EVALUATION OF RESULTS 

 

The exact algorithm is resource intensive in two areas: the determination of item sets 

from the original dataset and in solver processing. Item sets are determined through the Apriori 

algorithm. Research is active in improving the performance of this algorithm. The Apriori 

algorithm processing is time intensive as the logic transverses through a dataset. In all cases, the 

Apriori algorithm completed successfully but in some cases took more than one day for 

processing to complete on a personal computer.  

The most challenging resource intensive issue is in the processing of the solver. The 

solver reached the memory limitation of the personal computer on formulations based on the full 

dataset. The decision to select random samples of the datasets for the test cases was based on the 

memory limitations of the personal computer in the processing of the solver. 

The results of all solver processes for both algorithms revealed that the item set quality 

standards were met by both the original algorithm and the partitioning heuristic algorithm. At the 

selected mining threshold, all sensitive item sets were hidden because all are statistically 

insignificant. In addition, the statistical frequency of non-sensitive data remains intact.  

Review of the size of the database extension revealed that the Exact Hiding Algorithm 

was consistently smaller than the size of the Partitioning heuristic algorithm. This means that the 

Exact Hiding Algorithm produced the ideal solution (smallest database extension). As Table 2 
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(Appendix) reveals, the database extension for the Partitioning heuristic algorithm was no more 

than 7% larger than those solutions generated by the Exact Hiding Algorithm. 

In every test case, the original hiding algorithm generated the most constraints.  For each 

step of the partitioning heuristic algorithm where k = 2, the number of constraints were 

consistently about one-half the number of constraints generated by the original hiding algorithm 

for all datasets.  The number of constraints generated by the partitioning heuristic algorithm, 

where k = 4, is consistently about one-fourth the number of constraints generated by the original 

hiding algorithm. This is important because the as the number of constraints increases, so does 

the memory required for solver processing. The partitioning heuristic requires a smaller set of 

constraints and less processing memory in all test cases. 

 

CONCLUSION AND FUTURE RESEARCH 

 

Organizations participate in data sharing agreements either through value chain 

partnerships or to leverage the value of their information assets. Sharing data brings a direct 

economic advantage but also comes with risk when strategic information is shared with external 

parties. Sensitive information is identified through the mining of an organization’s own data. 

Once identified, an organization seeks methods to hide strategic relationships in the data while 

satisfying the requirements of data sharing agreements. This article presents research into a 

method for the privacy preserving of strategic frequent item sets in large databases. The research 

focused on improving the scalability of an exact hiding algorithm. This study identified a 

promising heuristic that reduces the computational cost of the exact approach. Future research 

could evaluate limitations of this heuristic with respect to the number of steps for partitioning the 

COP. Is there a relationship between the number of partitions and the size of the database 

extension when all solver solutions are combined?  

Implementation of the partitioning heuristic for processing by the solver is in steps of 

equal size, variable $. Heuristic processing based on COP formulations in $ steps generates the 

same set of transactions that are combined to form the database extension. Future research could 

evaluate modifying COP formulation of the partitioning heuristic algorithm so that each step 

generates a different proportion of the entire solution set. Heuristic processing that generates 

different size COP formulations will provide for a variety in transactions in the database 

extension. Although transaction variety in the database extension is not a quality metric, it may 

be considered desirable. It will also be interesting to repeat experiments with the partitioning 

heuristic algorithm as processor and solver performance improves.  
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APPENDIX 

Table 1. Test cases. 
 

 
 

Source 
Dataset 
Name 

 
 

 
Sample 

Size 

 
 

Mining 
Threshold 

Sensitive Item Set Information 

Total Count 
of Sensitive 
Item Sets  

Count of Items in Each 
Item Set 

Highest 
Frequency 

T1014D100k 300 .3 3 3 .35 

T1014D100k 300 .3 5 5 .50 

T1014D100k 300 .5 3 3 .55 

T1014D100k 300 .5 5 5 .70 

Connect 100 .3 3 3 .35 

Connect 100 .3 5 5 .50 

Connect 100 .5 3 3 .55 

Connect 100 .5 5 5 .70 

Retail 400 .3 3 3 .35 

Retail 400 .3 5 5 .50 

Retail 400 .5 3 3 .55 

Retail 400 .5 5 5 .70 
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Table 2. Comparison of the Partitioning Heuristic Algorithm to the Original Algorithm 

 

Test Case Constraints ∆  Solver Run Time ∆ Size of �%  ∆ 

File, Threshold, 

Sensitive Sets, Frequency 
PH (k=2) PH (k=4) PH (k=2) PH (k=4) PH (k=2) PH (k=4) 

T1014D100k, .3, 3 x 3, .35 (50 %) (75 %) (33 %) (62 %) 5.6 % 6.5 % 

T1014D100k, .3, 5 x 5, .50 (50 %) (75 %) (30 %) (62 %) 5.7 % 6.6 % 

T1014D100k, .5, 3 x 3, .55 (50 %) (75 %) (33 %) (61 %) 6.7 % 6.8 % 

T1014D100k, .5, 5 x 5, .70 (49 %) (74 %) (33 %) (60 %) 6.7 % 6.8 % 

Connect, .3, 3 x 3, .35 (50 %) (75 %) (60 %) (75 %) 3.2 % 4.1 % 

Connect, .3, 5 x 5, .50 (50 %) (75 %) (57 %) (74 %) 3.2 % 4.0 % 

Connect, .5, 3 x 3, .55 (50 %) (75 %) (58 %) (72 %) 3.2 % 4.0 % 

Connect, .5, 5 x 5, .70 (49 %) (75 %) (52 %) (72 %) 3.2 % 4.1 % 

Retail, .3, 3 x 3, .35 (50%) (75 %) (30 %) (78 %) 6.1 % 6.2 % 

Retail, .3, 5 x 5, .50 (49%) (74 %) (32 %) (78%) 6.1 % 6.2 % 

Retail, .5, 3 x 3, .55 (51%) (75 %) (32 %) (76 %) 6.1 % 6.2 % 

Retail, .5, 5 x 5, .70 (50%) (75 %) (32 %) (77 %) 6.0 % 6.1 % 

  
 


