
172697 – Journal of Technology Research

Improving scalability, Page 1

Improving scalability of privacy preserving algorithms

Carolyn LaMacchia, Ph.D.

Bloomsburg University of Pennsylvania

ABSTRACT

Data mining techniques reveal patterns in large databases that may be strategically

relevant. Organizations prepare the data before participating in data sharing agreements in order

to avoid revealing tactically important insights to external organizations. Viable techniques that

preserve the privacy of strategically significant frequent item sets are essential in the protection of

a competitive advantage. This research improves the scalability of a frequent item set hiding

algorithm through a partitioning heuristic that decomposes an exact hiding algorithm problem

formulation into multiple smaller sections that are processed separately to generate partial

extensions of the database. The smaller data extensions are then combined to form one extension

that reduces the statistical significance of all sensitive frequent item sets without changing the

statistical significance of the remaining data. By requiring less processing resources, the

partitioning heuristic improves the scalability of the exact hiding algorithm.

Keywords: Data privacy, Data mining, Frequent item set hiding, Association rules, Privacy

preserving,

Copyright statement: Authors retain the copyright to the manuscripts published in AABRI

journals. Please see the AABRI Copyright Policy at http://www.aabri.com/copyright.html

172697 – Journal of Technology Research

Improving scalability, Page 2

INTRODUCTION

Organizations analyze and share data to support the management of operations and

strategize for the future. Data sharing practices give rise to privacy concerns because of the

possibility of revealing both confidential data and sensitive knowledge patterns within the

disclosed data. Confidential data is protected by overlaying each data item with an insignificant

data stream. The identification and subsequent hiding of sensitive knowledge patterns is more

challenging. A variety of privacy preserving techniques are available to prevent the discovery of

sensitive knowledge within data. When compared, privacy preserving data mining algorithms

display strengths and weakness in processing performance and the ability to hide the appropriate

data (Vaghashia, & Ganatra, 2015; Gkoulalas-Divanis & Verykios, 2010; Gkoulalas-Divanis &

Verykios, 2009a; Gkoulalas-Divanis & Verykios, 2009b; Menon & Sarkar, 2007; Menon,

Sarkar, & Mukherjee, 2005).

Association rule mining discovers item sets that occur in transactional data some of

which occur with a significant frequency (Aggarwal & Philip, 2008). The strategically important

significant associate rules should be hidden within the database prior to sharing the data with

external parties. A new direction of research in privacy preserving techniques is identified as

exact approaches. This approach provides for better solutions but with increased time and

memory processing requirements. Exact approaches generate a constraint optimization problem

(COP) that is solved through binary integer programming (BIP). The objective function

minimizes the number of generated transactions so that enough transactions are created to make

sensitive item sets infrequent in the sanitized database. The constraints require that the frequency

of non-sensitive item sets is not changed in the sanitized database. The scalability of an exact

hiding process has limitations and addressing this limitation is very important due to the

exponentially increasing size of databases and the increasing number of data sharing instances

(Agrawal & Srikant, 1994; Gkoulalas-Divanis & Verykios, 2009b; Menon & Sarkar, 2007;

Menon, Sarkar, & Mukherjee, 2005).

This research addresses the scalability of an exact hiding algorithm with the development

of a partitioning heuristic which decomposes the COP formulation into multiple, smaller

172697 – Journal of Technology Research

Improving scalability, Page 3

problems. The solver processes the smaller problem separately and generates a smaller database

extension. The multiple database extension are combined to form an extension to the original

database. Identical test cases are used to compare solutions with the exact algorithm and the

partitioning heuristic algorithm. Several parameters are considered including: the size of the

COP input file; the number of records required to reduce the statistical significance of the

sensitive item sets; and, the statistical significance of non-sensitive item sets.

METHODOLOGY

Both versions of the algorithm are implemented: the original algorithm and the

partitioning heuristic algorithm. Identical datasets are processed by each algorithm with the same

mining frequency so that the frequent and infrequent item sets are identical. The same, arbitrary

sensitive item sets are identified. Processing results are then compared and analyzed. The design

of the original algorithm and the partitioning heuristic algorithm differ only in the generation of

the constraint optimization problem (COP). The COP depends on the following information:

172697 – Journal of Technology Research

Improving scalability, Page 4

a. �, the number of transactions in the original database �ℴ,

b. ℳ, the cardinality of the set of items,

c. �, the minimum number of transactions that the database extension �� must have

to properly secure the sensitive knowledge calculated as:

� =
 �� (��,�ℴ)
����� – N � + 1 (1)

d. Item sets identified through the iZi Project’s version of the Apriori algorithm

shared by Frédéric Flouvat (Flouvat, 2013).

The number of transactions in the database is identified by the variable N. Variable Q

signifies the minimum number of transactions that must be generated to reduce the statistical

significance of the most frequently occurring sensitive item set. As an example, assume a

database with 100 transactions, �=100, and a mining threshold of .3, ����� = .3, and a sensitive

item set with frequency of .4, therefore sup (I�, �ℴ) = 40. Based on Formula 1, a database

extension including 33 transactions should be combined with the original database so that the

sensitive item set is hidden. As a result, the sensitive item set is infrequent in the sanitized

database at the same mining threshold since it occurs with a frequency lower than .3. In cases

where there are multiple sensitive item sets, the item set with the highest frequency is selected

for this formula. Logically, if enough transactions are generated to hide the sensitive item set

with the highest frequency, then enough transactions have been generated to high sensitive item

sets with lower frequencies.

Next, a threshold is calculated for each nonsensitive item set. The threshold signifies the

maximum number of item sets that may be generated so that infrequent items may remain

infrequent and frequent items remain frequent in the final version of the database. The threshold

is based on the minimum frequency (mfreq) which is a number, designated by the owners of the

data. It identifies the occurrence level that separates item sets that are considered infrequent from

those considered frequent. An item set’s support level is identified by the variable sup(I, �o).

The original algorithm uses the following formula:

Threshold = (mfreq × (" + �) – sup(I, �o)) (2)

The partitioning heuristic algorithm considers the value k (signifying the number of

partitions) in determining the threshold and uses the following formula:

Threshold = (mfreq × (" + �) – sup(I, �o)) / $ (3)

During the development of the partitioning heuristic, preliminary testing confirmed the

appropriateness of threshold Formula 3. The solver did not successfully process in almost all test

cases based on thresholds calculated with alternative versions of the equation.

Constraint optimization problem solver

The COP solver regulates the values of all items in every transaction of the database ��

based on the constraints. The IBM CPLEX Optimizer is the linear optimization solver used to

test this research (IBM Academic Initiative, 2017). Theoretically, if the original COP

172697 – Journal of Technology Research

Improving scalability, Page 5

formulation for a problem can be logically decomposed into smaller problems, and the separate

results can be combined, then the combined processing resources will be less than the total

resources required to solve the original COP formulation. Each time the solver processes small

problems, it generates a fraction of the total transactions required for �� to hide the sensitive

item sets. Each generated transaction set is combined to form the database extension, ��.

The partitioning heuristic algorithm modifies the COP formulation process by generating

transactions in $ steps instead of generating all the transactions in �� at once like the original

hiding algorithm. The partitioning heuristic algorithm decomposes the problem by considering

the variable $ in determining the number of transactions to generate and in the calculation of the

threshold for item sets in the revised border. The algorithm generates approximately |��|/$

transactions which the solver processes separately. Combining the transactions in the $ steps of

the partitioning algorithm to form �� approximates the �� generated in one step of the original

algorithm.

The variable � determines the number of transactions that �� must have to properly

secure the sensitive knowledge in the COP formulation. The partitioning heuristic COP

formulation considers the value of � and $ and generates |�|/$ transactions for each of the $

steps. Generating |�|/$ transactions formulates a smaller COP with fewer variables and

constraints.

Comparison of the sizes of the COP formulations

The algorithms generate each section of the COP problem: the objective function,

frequent border constraints, infrequent border constraints, not-null constraints, and binary

variable declarations. The partitioning heuristic algorithm applies the variable $ to each section

of the formulation process. Formulation of the objective function is based on the value � and the

number of item sets. The objective function in the original algorithm includes �× M variables.

Applying $, the partitioning version of the algorithm includes |� × M| / $ variables.

The original algorithm generates 2� constraints for each record in the frequent and

infrequent item set border. A threshold is calculated for each constraint. The partitioning

heuristic algorithm generates 2� / $ constraints for each records in the frequent and infrequent

item set border. The formula for the threshold in the original algorithm is divided by the $

variable to determine the threshold for the partitioning heuristic algorithm. The heuristic has the

greatest impact on the formulation of the COP in this section of the process. The not-null

constraints section generates a constraint for each generated transaction so that the sum of the

variables is greater than or equal to one. The number of not-null constraints generated by the

partitioning heuristic algorithm is the number generated by the original algorithm divided by the

variable $.

The partitioning heuristic algorithm generates transactions in $ steps instead of

generating all the transactions in the database extension, ��, at once. The solver independently

solves each of the COP created by the partitioning heuristic algorithm process and generates

approximately |��|/$ transactions for each solver process. As a result, there are $ transaction

files generated by the solver. An additional step is added at the end of the partitioning heuristic

algorithm for combining the transactions in the $ steps to form �� approximates the ��

generated in one step of the original hiding algorithm.

172697 – Journal of Technology Research

Improving scalability, Page 6

Test cases

Test cases are based on three datasets of different sizes and compositions posted on the

Frequent Itemset Mining Implementations (FIMI) Repository and the Data Mining Forum:

T1014D100k.gz, connect.gz, and retail.gz (FIMI, 2017). It was necessary to select random sets

of transactions from the full set of data in each dataset because preliminary testing revealed that

the COP formulation based on the full dataset was too large for the solver to processing on

resources of a stand-along personal computer. Preliminary testing confirmed that processing

resources for the COP solver increases at an exponential rate with increasing problem sizes.

Testing revealed that the solver failed processing failed due to resource memory limitations with

formulations based on the entire set of transactions. Therefore, it was necessary to take random

samples of transactions from the original datasets for processing. Through an iterative process,

the number of transactions in the test cases were determined.

A random collection of 300 transactions were selected from the T1014D100k.gz dataset

generated by the IBM Almaden Quest research group (FIMI, 2017). This dataset includes 999

different items. Each transaction includes a set of item sets ranging in size from two to 25 item

sets. A random selection of 100 transactions were selected from the connect.gz dataset prepared

by Roberto Bayardo (FIMI, 2017).This dataset includes 129 difference items. Each transaction

includes 43 items. A random selection 500 transactions were selected from retail.gz dataset

prepared by Tom Brijs. This dataset include 16,470 difference items. Each transaction includes a

variety of items, a minimum of 1 and average of 13 items.

The sensitive item sets and the mining threshold of interest are arbitrarily assigned. Both

algorithms processed with the same parameters for each test case. The partitioning heuristic

algorithm was processed with $ = 2 (in 2 steps) and again with $ = 4 (in 4 steps). As a result,

there were three processes for each test case. The 18 test cases used to compare the original

hiding algorithm to the partitioning heuristic algorithm are described in Table 1 (Appendix).

EVALUATION OF RESULTS

The exact algorithm is resource intensive in two areas: the determination of item sets

from the original dataset and in solver processing. Item sets are determined through the Apriori

algorithm. Research is active in improving the performance of this algorithm. The Apriori

algorithm processing is time intensive as the logic transverses through a dataset. In all cases, the

Apriori algorithm completed successfully but in some cases took more than one day for

processing to complete on a personal computer.

The most challenging resource intensive issue is in the processing of the solver. The

solver reached the memory limitation of the personal computer on formulations based on the full

dataset. The decision to select random samples of the datasets for the test cases was based on the

memory limitations of the personal computer in the processing of the solver.

The results of all solver processes for both algorithms revealed that the item set quality

standards were met by both the original algorithm and the partitioning heuristic algorithm. At the

selected mining threshold, all sensitive item sets were hidden because all are statistically

insignificant. In addition, the statistical frequency of non-sensitive data remains intact.

Review of the size of the database extension revealed that the Exact Hiding Algorithm

was consistently smaller than the size of the Partitioning heuristic algorithm. This means that the

Exact Hiding Algorithm produced the ideal solution (smallest database extension). As Table 2

172697 – Journal of Technology Research

Improving scalability, Page 7

(Appendix) reveals, the database extension for the Partitioning heuristic algorithm was no more

than 7% larger than those solutions generated by the Exact Hiding Algorithm.

In every test case, the original hiding algorithm generated the most constraints. For each

step of the partitioning heuristic algorithm where k = 2, the number of constraints were

consistently about one-half the number of constraints generated by the original hiding algorithm

for all datasets. The number of constraints generated by the partitioning heuristic algorithm,

where k = 4, is consistently about one-fourth the number of constraints generated by the original

hiding algorithm. This is important because the as the number of constraints increases, so does

the memory required for solver processing. The partitioning heuristic requires a smaller set of

constraints and less processing memory in all test cases.

CONCLUSION AND FUTURE RESEARCH

Organizations participate in data sharing agreements either through value chain

partnerships or to leverage the value of their information assets. Sharing data brings a direct

economic advantage but also comes with risk when strategic information is shared with external

parties. Sensitive information is identified through the mining of an organization’s own data.

Once identified, an organization seeks methods to hide strategic relationships in the data while

satisfying the requirements of data sharing agreements. This article presents research into a

method for the privacy preserving of strategic frequent item sets in large databases. The research

focused on improving the scalability of an exact hiding algorithm. This study identified a

promising heuristic that reduces the computational cost of the exact approach. Future research

could evaluate limitations of this heuristic with respect to the number of steps for partitioning the

COP. Is there a relationship between the number of partitions and the size of the database

extension when all solver solutions are combined?

Implementation of the partitioning heuristic for processing by the solver is in steps of

equal size, variable $. Heuristic processing based on COP formulations in $ steps generates the

same set of transactions that are combined to form the database extension. Future research could

evaluate modifying COP formulation of the partitioning heuristic algorithm so that each step

generates a different proportion of the entire solution set. Heuristic processing that generates

different size COP formulations will provide for a variety in transactions in the database

extension. Although transaction variety in the database extension is not a quality metric, it may

be considered desirable. It will also be interesting to repeat experiments with the partitioning

heuristic algorithm as processor and solver performance improves.

REFERENCES

Aggarwal C. & Philip, S. (2008). Privacy-preserving data mining: models and algorithms. New

York: Spring Science + Business Media.

Agrawal, R. & Srikant, R. (1994). Fast Algorithms for Mining Association Rules. Proceedings of

the 20th VLDC Conference, Chile, Santiago.

Flouvat, F. (2013). Special Implementation of the iZi project that provides positive and negative

border. Retrieved through an attachment to LaMacchia, C. May 6, 2013 email account.

Frequent Itemset Mining Database Repository. Retrieved June 12, 2017 from: http://

fimi.ua.ac.be/data/

172697 – Journal of Technology Research

Improving scalability, Page 8

Gkoulalas-Divanis, A. & Verykios, V. S. (2010). Association Rule Hiding for Data Mining. New

York: Springer.

Gkoulalas-Divanis, A. & Verykios, V. S. (2009a). An overview of privacy preserving data

mining. Crossroads, 15(4), Article No. 6. New York: ACM.

Gkoulalas-Divanis, A. & Verykios, V. S. (2009b). Exact Knowledge Hiding through Database

Extension. IEEE Transaction on Knowledge and Data Engineering, 21(5), 699–713.

IBM Academic Initiative. (2017). IBM ILOG CPLEX Optimization Studio, V12.7.1 Retrieved

June 12, 2017 from:

https://ibm.onthehub.com/WebStore/OfferingDetails.aspx?o=9b4eadea-9776-e611-9421-

b8ca3a5db7a1

Menon, S. & Sarkar, S. (2007). Minimizing Information Loss and Preserving Privacy.

Management Science, 53(1), 101–116.

Menon, S., Sarkar, S., & Mukherjee. S. (2005). Maximizing accuracy of shared databases when

concealing sensitive patterns. Information Systems Research, 16(3), 256–270.

Vaghashia, H. & Ganatra, A. (2015). A Survey: Privacy Preservation Techniques in Data

Mining. International Journal of Computer Applications, vol. 119, iss. 4, pp. 20-26.

* Acknowledgement: Sumitra Mukherjee, Ph.D, Dissertation Chair, Francisco Mitropoulos,

Ph.D., Dissertation Committee Member, & Michael J. Lazio, Ph.D., Dissertation Committee

Member, Nova Southeastern University, Ft. Lauderdale, FL, USA

172697 – Journal of Technology Research

Improving scalability, Page 9

APPENDIX

Table 1. Test cases.

Source
Dataset
Name

Sample

Size

Mining
Threshold

Sensitive Item Set Information

Total Count
of Sensitive
Item Sets

Count of Items in Each
Item Set

Highest
Frequency

T1014D100k 300 .3 3 3 .35

T1014D100k 300 .3 5 5 .50

T1014D100k 300 .5 3 3 .55

T1014D100k 300 .5 5 5 .70

Connect 100 .3 3 3 .35

Connect 100 .3 5 5 .50

Connect 100 .5 3 3 .55

Connect 100 .5 5 5 .70

Retail 400 .3 3 3 .35

Retail 400 .3 5 5 .50

Retail 400 .5 3 3 .55

Retail 400 .5 5 5 .70

172697 – Journal of Technology Research

Improving scalability, Page 10

Table 2. Comparison of the Partitioning Heuristic Algorithm to the Original Algorithm

Test Case Constraints ∆ Solver Run Time ∆ Size of �% ∆

File, Threshold,

Sensitive Sets, Frequency
PH (k=2) PH (k=4) PH (k=2) PH (k=4) PH (k=2) PH (k=4)

T1014D100k, .3, 3 x 3, .35 (50 %) (75 %) (33 %) (62 %) 5.6 % 6.5 %

T1014D100k, .3, 5 x 5, .50 (50 %) (75 %) (30 %) (62 %) 5.7 % 6.6 %

T1014D100k, .5, 3 x 3, .55 (50 %) (75 %) (33 %) (61 %) 6.7 % 6.8 %

T1014D100k, .5, 5 x 5, .70 (49 %) (74 %) (33 %) (60 %) 6.7 % 6.8 %

Connect, .3, 3 x 3, .35 (50 %) (75 %) (60 %) (75 %) 3.2 % 4.1 %

Connect, .3, 5 x 5, .50 (50 %) (75 %) (57 %) (74 %) 3.2 % 4.0 %

Connect, .5, 3 x 3, .55 (50 %) (75 %) (58 %) (72 %) 3.2 % 4.0 %

Connect, .5, 5 x 5, .70 (49 %) (75 %) (52 %) (72 %) 3.2 % 4.1 %

Retail, .3, 3 x 3, .35 (50%) (75 %) (30 %) (78 %) 6.1 % 6.2 %

Retail, .3, 5 x 5, .50 (49%) (74 %) (32 %) (78%) 6.1 % 6.2 %

Retail, .5, 3 x 3, .55 (51%) (75 %) (32 %) (76 %) 6.1 % 6.2 %

Retail, .5, 5 x 5, .70 (50%) (75 %) (32 %) (77 %) 6.0 % 6.1 %

